

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

LESSON PLAN

Course Code	Course Title	Year/Sem	Branch	Contact Hrs/Week	Section
R20	CONTROL SYSTEMS	III/I	EEE	5	EEE

COURSE OUTCOMES:

At the end of the course students are able to

<u>CO1</u>: Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs.

<u>CO2</u>: Determine time response specifications of second order systems and absolute and relative stability of LTI systems using Routh's stability criterion and root locus method.

<u>CO3</u>: Analyze the stability of LTI systems using frequency response methods.

<u>CO4:</u> Design Lag, Lead, Lag-Lead compensators to improve system performance using Bode diagrams.

<u>CO5:</u> Represent physical systems as state models and determine the response. Understand the concepts of controllability and observability.

Unit No.	Out Comes	TOPIC(8)		BOOK Referen	Total period	Delivery Method	GATE/ IES
				ce	S		
	UNI	T I -M	lathematical Modelling of Con	trol Syster	ns		
	CO1:: To learn the mathematical modeling of physical	1.1 1.2 1.3	Classification of control system open loop and closed loop control systems and their differences Feedback characteristics	T1 T1 T1	15	Chalk & Talk, PPT, Active Learning	
1	systems and to use block diagram algebra and signal flow graph to determine overall transfer function	1.4 1.5	transfer function of linear system, differential equations of electrical networks translational and rotational	T1 T1	, Smart board & Tutorial		
		1.6	mechanical systems transfer function of Armature voltage controlled DC servo motor	T1			
		1.7	block diagram algebra	T1			

		1.0	: 10 1	T1					
		1.8	signal flow graph						
		1.9	reduction using Mason's gain	T1					
	UNIT	II - Ti	ime Response Analysis and	l Control	llers				
		21	Standard test signals	T1 T2					
2		2.1	time response of first and	T1, T2					
2	CO2· To analyze the		second order systems	11, 12		C1 11 0			
	time response of first	23	time domain specifications	T1 T2		Chalk &			
	and second order	2.3 2.4	steady state errors and error	T1, 12		Talk,			
	systems and	2.1	constants			PPT			
	improvement of	2.5	effects of proportional (P)	T1		Active			
	PI, PD, PID	2.6	proportional integral (PI)	T1, T2		Learning			
	controllers. To investigate the	2.7	proportional derivative (PD)	T1, T2	12	board&C			
	loop systems using	2.8	proportional integral derivative (PID) systems.	T1		Study			
	criterion and root	2.9	The concept of stability – Routh's stability criterion	T1					
	locus method.	2.10	limitations of Routh's stability,	T1					
		2.11	root locus concept – construction of root loci (simple problems)	T1					
			2.1	2.12	Effect of addition of Poles and Zeros to the transfer	T1, T2			
			function.						
	UNI	ТШ	- Frequency Response Ana	alvsis					
		3.1	Introduction to frequency domain specifications	T1, T2		Chalk & Talk			
3		3.2	Bode diagrams	T1, T2	14	PPT, Smart			
	CO3: To understand basic aspects of	3.3	transfer function from the Bode diagram	T2		board'La			
	design and compensation of LTI	3.4	Polar plots, Nyquist stability criterion	T1, T2		D, Tutorial			
	systems using Bode diagrams.	3.5	stability analysis using Bode plots (phase margin and gain margin).	T2					
	UNI	T IV-	Classical Control Design	Fechniau	ies				
	CO4: To learn Frequency Response	4.2	physical realisation	T1					
	approaches for the analysis of LTI	4.3	design of compensators using Bode plots.	T2	-				
	systems using Bode plots, polar	4.4	lead compensators	T1	10				
	plots and Nyquist stability criterion.	4.5	lag-lead compensators	T1, T2					

	UNIT V - State Spa	ce A	alysis of Linear Time Inva Concepts of state	ariant (L ' T1, T2	TI) Sys	tems Chalk &	
~		5.2	state variables and state model	T1, T2	12	Talk, PPT	
3	CO5: : To learn state space approach for analysis of LTI	5.3	State space representation of transfer function	T2	12	Tutorial, Active	
		5.4	diagonalization using linear transformation	T2		Learning &	
un co co	understand the	5.5	solving the time invariant state equations	T1, T2		Seminars	
	controllability and	5.6	State Transition Matrix and its properties	T1, T2			
	coservaointy.	5.7	concepts of controllability and observability.	T2			
			TOTAL		63		

CO1	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs.	APPLY	К3
CO2	Determine time response specifications of second order systems and absolute and relative stability of LTI systems using Routh's stability criterion and root locus method.	APPLY	К3
CO3	Analyze the stability of LTI systems using frequency response methods.	APPLY	К3
CO4	Design Lag, Lead, Lag-Lead compensators to improve system performance using Bode diagrams.	ANALYZE	K4
CO5	Represent physical systems as state models and determine the response. Understand the concepts of controllability and observability.	APPLY	К3

<u>CO-PO MAPPING</u>: (1: Slight [Low]; 2: Moderate [Medium]; 3: Substantial [High]]; '-': No Correlation)

					COL	relation						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1-K3	3	3	3	3	2	2	<u>2</u>		<u>3</u>	2	3	3
CO2-K3	3	3	3	2	2	2	2		3	2	3	3
СО3-К3	3	3	3	3	2	2	2		3	2	3	2
CO4-K4	3	3	3	3	2	2	2		2	2	2	3
CO5-K3	3	3	3	2	2	2	2		3	2	3	2

S.NO	GRADUATE ATTRIBUTION	ACTION VERBS	LEVEL
1	ENGINEERING KNOWLEDGE	APPLY	K3
2	PROBLEM ANALYSIS	ANALYZE	K4
3	DESIGN DEVELOPMENT OF SOLUTIONS	UNDERSTANDIG	K2

4	INVESTIGATION OF COMPLEX PROBLEMS	APPLY, ANALYZE,	K3,K4
5	MODERN TOOL USAGE	APPLY	К3
6	ENGINEER AND SOCIETY	ANALYZE	K4
7	ENVIRONMENT AND SUSTAINABILITY		
8	ETHICS		
9	INDIVIDUALS AND TEAM WORK	APPLY, ANALYZE	K3,K4
10	COMMUNICATION	APPLY, ANALYZE,	K3,K4
11	PROJECT MANAGEMENT AND FINANCE	APPLY	K3
12	LIFE LONG LEARNING		

Text Books:	
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
1.	Modern Control Engineering by Kotsuhiko Ogata, Prentice Hall of India
2.	Automatic control systems by Benjamin C.Kuo, Prentice Hall of India, 2 nd Edition
Reference Book	<s:< th=""></s:<>
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
1.	Control Systems principles and design by M.Gopal, Tata Mc Graw Hill education Pvt Ltd., 4 th Edition.
2.	Control Systems Engineering by Norman S. Nise, Wiley Publications, 7 th edition
3.	Control Systems by Manik Dhanesh N, Cengage publications.
4.	Control Systems Engineering by I.J.Nagarath and M.Gopal, Newage International Publications, 5 th Edition.

		Name	Signature with Date
i.	Faculty	B.Ganesh	
ii.	Course Coordinator		

HOD

PRINCIPAL